

AEROSPACE INFORMATION REPORT

SAE AIR5601

Issued

2005-06

A Guideline for Application of RF Photonics to Aerospace Platforms

FOREWORD

This document was developed by the SAE AS-3A-2 RF/Analog Technology Task Group under AS-3 Fiber Optics and Applied Photonics and AS-3A Applications. The formation of this task group was approved at the fall meeting of the SAE AS-3 committee in October 2002. While RF photonics technology can potentially provide enormous benefits to future aerospace platforms, the technology is significantly different from conventional RF technology and requires engineers to think in somewhat new terms and adapt to the peculiarities of the medium. Establishment of guidelines for the application of RF photonics technology will assist avionics systems suppliers and customers in the design, development, and testing of future systems which incorporate photonics networks that include analog RF signal transmission. This document is dedicated to that goal. There are many contributors to be recognized for their efforts in developing this document and the AS-3 Fiber Optics and Applied Photonics Committee is grateful for everyone's contributions. Unfortunately we cannot list the names of individuals in this document.

The intended audience for this work is new engineering graduates, experienced engineers who are new to fiber optics and managers who are new to fiber optics or have been away from dayto-day exposure to fiber optics for a while. Realizing that the SAE is an international organization and that information published by the SAE is available worldwide, the information contained herein is limited to that which is also available independently from the various companies which provided it. This document only serves to gather and collate the information from the many various sources to facilitate the understanding and utilization of RF/Analog signals transmitted over fiber-optic networks.

SAE Technical Standards Board Rules provide that: "This report is published by SAE to advance the state of technical and engineering sciences. The use of this report is entirely voluntary, and its applicability and suitability for any particular use, including any patent infringement arising therefrom, is the sole responsibility of the user."

SAE reviews each technical report at least every five years at which time it may be reaffirmed, revised, or cancelled. SAE invites your written comments and suggestions. Copyright © 2005 SAE International

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of SAE.

TO PLACE A DOCUMENT ORDER:

Tel: 877-606-7323 (inside USA and Canada) Tel: 724-776-4970 (outside USA) Fax: 724-776-0790 Email: custsvc@sae.org http://www.sae.org

Leading Our World In Motion

SAE AIR5601

This task group was formed with an open invitation to professionals in government and at major platform developers and suppliers of photonics systems and components. Beginning with a few contacts from SAE and existing programs, the call went out: who do you know with RF photonics expertise? From these new contacts: who do you know? So I call this task group the "who do you know, who do you know group". These are professionals known by their piers as experts in the field of RF photonics technology. They have worked on a volunteer basis with the support of their company or organization to develop a document that defines the current art of RF photonics. I am indebted to them and their organizations for their dedication to this effort.

SAE AIR5601

TABLE OF CONTENTS

1. SCOPE		9
2. REFERENCES		
2.1	List of Acronyms	9
3. RF PHOTONICS AEROSPACE APPLICATIONS AND ADVANTAGES		
3.1	Advantages of Photonics in RF Systems	16
3.1.1	Electromagnetic Interference (EIMI) Resistance	10
3.1.Z	Superior Pridse Stability	17
3.1.3	Small Size/Light Weight Cabling	17
3.1.4	Stridit Size/Light Weight Cabling	17
316	Growth Canability and Scalability	17 18
317	Survivability and Vulnerability	10
3.2	Signal Distribution and Delay Applications	10
321	Antenna Remoting and Signal Distribution	10
322	RF Delay Lines	20
323	Use of RF Delay Lines for Radar Testing or False Target Generation	22
324	Use of Wavelength Division Multiplexing to Replace RF Switching	22
3.2.5	True Time Delay Beamforming	25
3.3	Signal Processing and Generation Applications	
3.3.1	RF Signal Generation Using Photonic Processes	26
3.3.2	RF-Photonic Methods for Frequency Conversion	27
3.3.3	RF-Photonic Transversal Filters	29
3.3.4	RF-Photonic Sampling of Analog Waveforms	30
3.3.5	Use of RF Photonics in Digital Systems	31
3.4	Summary	33
4. RF PHOTONICS SYSTEMS CONSIDERATIONS		
4.1	Frequency Bands of RF Systems	34
4.2	RF Systems Architecture with Insertion of Photonics Technologies	35
4.2.1	Suitability of Multi-Mode Optical Fiber for RF-Photonic Systems	35
4.2.1.1	Characteristics of Multi-Mode Optical Fibers	35
4.2.1.2	Performance Limitations of RF-Photonic Links with Multi-Mode Optical Fibers	36
4.2.1.3	Use of Multi-mode Fiber with Multi-Mode Photonic Devices	40
4.2.2	Selection of Optical Wavelength for RF-Photonic System	41
4.2.3	RF-Photonic Signal Distribution and Switching Architectures	43
4.2.4	Considerations for Multiplexing of Analog and Digital Signals	46
4.24.1	Optical Non-Linearities in Fiber	47
4.3	Modulation Techniques for RF Photonic Applications	48
4.3.1	Intensity Modulation	49
4.3.2	Frequency Modulation	
4.3.3	Phase Modulation	50
4.3.4	Subcarrier Multiplexing (SCM)	50